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In this paper, the electron is considered a bound state of a neutrino and a 
negative pion. A model Lagrangian density that combines weak and electromag- 
netic interactions gives rise to equations of motion that define such a state. In 
this model, the muon is a bound state of an antineutrino and a negative pion, 
which explains why it cannot decay into an electron and a photon. The decay 
of unstable particles is reduced to pair creation plus particle recombination. The 
neutral pion is described by an interference between the charged-pion states. 
Several variations of the model are also presented. 

1. INTRODUCTION 

In the half century since the beginning of quantum electrodynamics, 
great progress has been made in the understanding of the interactions 
between charged particles and the electromagnetic field. Furthermore, the 
weak interactions between particles have been unified with the electromag- 
netic ones, and progress has been made in further unification with strong 
and even gravitational interactions. 

Nevertheless, in spite of impressive agreement between theory and 
experiment, many physicists share the opinion that the ultimate formulation 
of these theories has to be different from the present one in significant ways. 
The whole renormalization procedure that underlies the calculations is ill 
defined from a mathematical point of view. The special role that time plays 
in particle physics is not always fully appreciated. In relativistic quantum 
mechanics, equations may be covariant but the time-boundary conditions 
generally are not. Time is a parameter that marks the development of a 
state, while the space variables are continuous indices that label the degrees 
of freedom of the system. A particular Lorentz frame represents an observer 
at rest in that frame, and that observer determines the type of initial and 
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final conditions that are imposed on the system. The special role of time 
in quantum field theory is quite obvious in the Schr/Sdinger picture, less so 
in the "manifestly covariant" Heisenberg picture, with the Dirac picture in 
between. The Gupta-Bleuler formalism, which singles out the time com- 
ponent of the electromagnetic potentials, is an awkward way of handling 
the constraints in the electromagnetic theory that is best avoided in favor 
of other approaches. Other long-standing puzzles remain. Where do the 
masses of the leptons come from, and why are the masses of the electron 
and the muon so different? Why have no electrically charged massless 
particles been observed? Why are there two (or more) neutrinos and in 
what sense do they differ? What is the matter-antimatter distribution in the 
universe, and why? Are there simpler and more elegant theories of "elemen- 
tarf" particles? 

The research that underlies the model presented here is guided by the 
belief that a better theory will be similar, but not equivalent, to the theory 
that is now generally accepted. Even if different formulations ultimately 
turn out to be equivalent, it is often useful to have several alternative views 
of theoretical and experimental results to help in specific applications. 

We propose a new formulation of the electromagnetic and weak interac- 
tions. We focus our attention on the older leptons and examine only the 
most basic facts. Although we choose a specific Lagrangian density to 
describe the system, other Lagrangians can accommodate the same qualita- 
tive features of the model. We have already addressed a number of related 
problems within a more consistent theory of particles and their interactions, 
and this framework provides the support for this model. There remains 
much theoretical work to be done before the model can be extended to its 
full domain and be tested against the large number of experimental results 
accumulated over the years. If the basic model cannot be made to agree 
with an experiment, there are many variations that may satisfy the require- 
ments. 

The points of view we present in this paper are an outgrowth of research 
motivated primarily by the need to give a better foundation to quantum 
electrodynamics and other field theories. Unhappiness with the renormaliz- 
ation procedure of quantum field theory made us look for an alternative 
formulation. An approach that has a number of attractive features is Dirac's 
many-times formalism of relativistic quantum mechanics (Dirac, 1932). This 
theory was abandoned in favor of quantum field theory apparently because 
the creation and annihilation operators of the latter were thought to be 
required to change the number of particles in a physical state. Nevertheless, 
we showed (Marx, 1969, 1970a) how pair creation and pair annihilation 
can be represented in relativistic quantum mechanics by means of an 
appropriate choice of normalization for the wave function, the specification 
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of initial conditions for particles and final conditions for antiparticles, and 
a more literal adherence to the Stueckelberg (1941, 1942) and Feynman 
(1949) interpretation of antiparticles as particles propagating backward in 
time. Our theory shares many features with the interpretation of the Klein- 
Gordon equation in relativistic quantum mechanics (Feshbach and Villars, 
1958; Bjorken and Drell, 1964). The broader implication of our approach 
is that elementary-particle physics takes place in a space-time without a 
preferred time direction, and that human observers introduce the arrow of 
time because they are made out of matter. 

A relativistic wave function can be decomposed into positive- and 
negative-frequency parts, which represent particles and antiparticles, respec- 
tively. The theory of scalar charged particles in external electromagnetic 
fields follows the familiar pattern of nonrelativistic quantum mechanics, 
with probability amplitudes and perturbation expansions without divergent 
terms. We base our interpretation on a conserved charge instead of a 
conserved probability. The theory of the interaction between nonrelativistic 
charged particles and a dynamical electromagnetic field suffers from concep- 
tual and practical difficulties. These problems can be traced back to the fact 
that nonrelativistic quantum mechanics and electromagnetism are invariant 
under different groups of coordinate transformations and, therefore, that 
they cannot be properly matched. We have generalized the relativistic 
quantum mechanics of charged bosons in an external electromagnetic field 
to the interaction of a single scalar particle with a dynamical electromagnetic 
field (Marx, 1979), but we have not been able to find a relativistic form of 
the Coulomb interaction between particles or a full interaction between a 
many-particle wave function and the electromagnetic field. Our difficulty 
may go back to the classical theory of charged particles (Rohrlich, 1965; 
Marx, 1975, 1976), which is not free of inconsistencies. For instance, there 
are indications in the classical theory (Marx, 1975, 1976) and in the quantum 
theory (Marx, 1979) that antiparticles interact with advanced electromag- 
netic fields. We emphasize that we are working with a formalism that 
describes a fixed number of "particles," which can nevertheless appear both 
as particles and antiparticles at the same time. As a result, perturbation 
expansions are free of troublesome closed-loop diagrams. 

The theory of charged spin-�89 particles is much less satisfactory. A 
bispinor field ~0 that obeys the Dirac equation represents a spin-�89 particle 
interacting with an external electromagnetic field. The field ~b forms a 
conserved "probability current density" j~, with a positive-definite Jo. The 
positivity ofjo, which originally was considered an important advantage of 
the Dirac equation over the Klein-Gordon equation, becomes a drawback 
in relativistic quantum mechanics. A positive "charge" precludes the inter- 
pretation of the wave function in terms of probability amplitudes, essentially 
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because an electron cannot become a positron as time advances. We can 
change the sign of one or two of the components of the Hamiltonian (Marx, 
1970b), much as happens when operators are normal ordered in quantum 
field theory, but this ad hoc procedure is awkward at best. A more satisfactory 
formulation of the theory is a quantization (Marx, 1972a) of the field ff of 
relativistic quantum mechanics that leads to a many-particle formalism very 
similar to the nonrelativistic theory. There we follow Bopp's suggestion 
(Bopp, 1965) that antiparticles propagate backward in time when they are 
created and make all operators in ff annihilation operators. We further 
assume that the Hamiltonian operator acts on a state vector to displace 
particles forward in time and antiparticles backward. The resulting theory 
has a simple vacuum state that does not suffer from vacuum polarization, 
has states with a fixed number of"particles," and is equivalent to a relativistic 
quantum mechanics of many particles. The probability amplitudes are 
essentially those of Foldy and Wouthuysen (1950), the position operator 
is x, there is no zitterbewegung, and there is no need for an infinite sea of 
negative-energy electrons. The main disadvantage is that the state vector 
has one time variable for each "particle." 

There has been considerable interest in the two-component spinor 
formulation of quantum electrodynamics, as opposed to the bispinor or 
four-component spinor formulation. The Dirac equation can be expressed 
in both forms, but the bispinor equation can be derived from a Lagrangian 
density while no such a derivation has been found for the spinor equation. 
A third-order spinor equation can be obtained from a Lagrangian density 
and the solutions combine massive and massless particles, but the massless 
ones are charged (Marx, 1974a). The first-order Weyl equation for massless 
spinors can also be obtained from a Lagrangian density. We prefer spinor 
equations because spinors are more fundamental than bispinors, and weak 
interactions, where parity is not conserved, are more naturally represented 
in terms of spinors, since spinors that obey the Weyl equation have only 
one helicity. 

We thus come to the conclusion that it is better for fermions to be 
neutral while bosons carry the charge. Furthermore, if we accept that 
particles do not appear or disappear, but only go back and forth in time, 
examination of the diagram for muon decay in Figure la suggests that 
neutrinos, electrons, and muons are in some sense the same particle. There 
has to be a charge that is originally associated with the muon and that 
transfers to the electron. Since the pion cannot decay by becoming a virtual 
nucleon-antinucleon pair because the theory does not allow closed loops, 
we conclude that the intermediate charged particle is a pion. Hence, we 
propose that the electron be considered a bound state o f  a neutrino and a 
pion. And, to make the negative muon different from the electron, we propose 
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Fig. 1. (a) Traditional view of muon decay. (b) Basic diagram for the new model, showing 
the composite electron and muon. 

that this muon be considered a bound state of  an antineutrino and a pion. 
These assignments of the neutrino and antineutrino may be reversed depend- 
ing on calculations of  the energy of bound states. The new representation 
of  muon decay is shown in Figure lb. A process that originally involved 
four different fermions and one intermediate boson is reduced to a process 
that involves one massless fermion and one massive charged boson. The 
corresponding reaction is 

/ ~ - ~  e - + 2 ~  (1) 

It should be immediately obvious why the reaction 

t t - ~ e - + y  (2) 

is not allowed, since such a decay would require the antineutrino in the 
muon to become the neutrino in the electron. The pion decay then proceeds 
according to the diagrams in Figure 2, 

~ r - ~ / z - +  p (3) 

7 r -~  e - +  ~ (4) 

Whether the neutrino and the pion retain their identities in these bound 
states or whether they combine to form new particles is to some extent a 
matter of  definition. A similar question arises when we consider whether 
mesons and nucleons are composed of quarks and antiquarks. 
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Pion-decay diagrams according to the new model. 

In Section 2 we introduce a Lagrangian density that describes the weak 
interactions between pions and neutrinos, in Section 3 we add the elec- 

t romagnetic  interactions to this formalism, in Section 4 we present some 
thoughts on the bound-state problem, and in Section 5 we discuss several 
alternative formulations. 

We use the time-favoring metric in space-time, natural units, and the 
modified summation convention for repeated lower Greek indices. Notation 
not defined in this paper is either standard or explained in previous papers. 

2. WEAK INTERACTIONS 

We choose the spinor field XA, A = 1, 2, to represent the neutrino, and 
the complex (pseudo) scalar field ~ to represent the pion. 

We start from the Lagrangian density 

1 -/ ~ AS :,g AB ~=~t;.XAO'~ Xn.~,-XAa, o'~ Xn)+ * ~b,~. ~.~ - m2,b* 4) - gl,.J~. (5) 

where 

j~ - ~a~,~ x~ (7) 

_ f(o) _ 2g/~d).~b (8) 

./(f ) = i(~b*&., - ~b*~, ~b) (9) 
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The Euler-Lagrange equations of motion are 
�9 AB ..t-~ AB,  r(o) -'o-~, XB, t*-s~'~ ,~Bot* =0 (I0) 

(02+ m2)~b + 2ig/t*q~ a, = 0 (11) 

We note that, when g =0,  equation (10) reduces to the Weyl equation, 
which describes right-handed massless spin-�89 particles. We have used the 
identity 

AB CD=2eAC eBO (12) O't, O't* 

where 

(~ae) =(~"~ (_~ 1 10) 
and conservation of charge, 

jt*,t* =0 

(13) 

in the derivation of equations (10) and (11). In particular, from (12) we 
derive 

O- la " )(.BJ# - -  u , ./{BX C U  I.L ,,~D = X B X B , ~ z ~ A  = o (15) 

where the matrix in equation (13) is used to raise spinor indices (we recall 
that XnX B=- 0), and, consequently, that 

j2 = 0 (16) 

The pion current density J,, is also conserved, that is, 

Jt*,~ = 0 (17) 

1 (~ is not conserved. We prefer to use J ,  in the current-current but _~ 
interaction term in the Lagrangian density, although equation (16) implies 
that the added portion vanishes identically. We thus have two independent 
conservation laws: (electric) charge is conserved and the number of 
neutrinos is conserved. 

The conserved "charges" are 

q=fd3xjo=f d3xxtx (18) 

Q =  f d3xJo= I d3x[i(ck*~-(b*ck)-2gx*xck*ck] (19) 

The stress-energy tensor obtained from the Lagrangian density (5) is 
1 �9 :g AB ~ AB :~ + 

(20) 

(14) 
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The integral of To, over space gives the energy-momentum vector 

P o = f  d3x(ix~oA~X,,,+(b*4)+qb*&,,+m2qb*fb-gjfll~ (21) 

P~ = f d3 x( ix~~ + fb * qb + Jp * Cb,,- gjoJl ~ (22) 

where we have used the equations of motion and integration by parts to 
simplify the expressions for P,. (There should be no problem in distinguish- 
ing between the index i and the imaginary unit in the first term.) 

The plane-wave steady state solutions for the free neutrino are 

X(X) = (2~r)-3/2bA (P)X* (/3) e -'p'x (23) 

where the X a(/3) are the helical states 

=(cos(0/2) ~ ( -s in(O/2)  e - i ~  
X+'(/3) \ s in(0/2)  e'~] ' X - ' ( / 3 ) = \  cos(0/2) / '  (24) 

0 and ~o being the polar and azimuthal angles of/3. We set g = 0 in equation 
(10) and substitute the above expression for X(x) to obtain 

po-alpl--0 (25) 
and, since we assume that Po > 0, we conclude that 

A = +1, Po = IPl (26) 

For the antineutrino, 

X(X) = (2~r)-3/Zd;, (P)X* (-/3) e'P'" (27) 

whence 

A = -1 ,  Po = IP] (28) 

These solutions are not normalizable and they should be used in wave 
packets. Nevertheless, we can see that the contribution to the energy is 
positive for the particle and negative for the antiparticle, although the sign 
of the energy of the antiparticle may be changed by quantization of the 
field. The "charge" q is positive for both states. 

When the neutrino field interacts with the pion field, the restriction to 
a single helicity no longer follows from the equation of motion. 

The plane-wave states for the free pion are 

q~(• = (2"n')-3/2(2ko) -1/2 e :~ikx (29) 

where 
ko = + (k 2 + m 2)'/2 (30) 
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The "charge" Q of these states is positive for the upper signs and negative 
for the lower ones. The energy is positive for both. Interesting linear 
combinations of these states are 

r176 = ( 2 ~ ) - 3 / 2 ( k o )  - ' / 2  ~i~n S k"  x (31) 

which have Q = 0 and could thus represent the neutral-pion state. This state 
is similar to a standing wave, and the pion interferes with itself coming and 
going in time. The neutral pion can then decay into two photons through 
the electromagnetic interactions just as positronium does. The mass of the 
neutral pion is reduced by the binding energy to a value close to that of 
the charged pions. 

The angular-momentum tensor density is 

where 

= rix x. - rix.x  + six . (32) 

1 -  * .A~B C l ; .  ~ (40 * C /~A (33) 
SIXuA : 2|XAO'Ix ~fvAB X.c - -2"a  C~" uA.~ t"tx A~A 

1 / CB (~B 
~fvAAB = ]~ O'veA O'A -- O'At~A Or v ) (34) 

The angular-momentum vector is then 

M i  = ~eqkl d 3 x  M o j k  = eijk d 3 x  TojXk +�89 d 3 X , ~ A ~ , i  ,~s  (35) 

where the second term can be interpreted as the spin angular momentum 
that comes from the neutrino field. 

3. ELECTROMAGNETIC INTERACTIONS 

We introduce the electromagnetic interactions by means of gauge- 
invariant substitution 

Oix ~ Dix = Oix - i eAix  (36) 

but we restrict the electromagnetic gauge transformations to the pion field. 
(We use the same letters for the modified quantities to keep the notation 
simple.) The sign of the coefficient of the potentials Aix reflects the choice 
of - e  for the charge of the particle. The new Lagrangian density is 

1 - ~ A B  :~ A B  \ 1 
5~ = ~ z ( X A O'IX X B, ix - g A, ix cr ix X B ) - ~ Fix ~ F ~ ~ + ( D * fb * ) D ix r - m 2 c/~ * dP - g j ~ J ix 

(37) 

where Fix~ is the electromagnetic field tensor. The expressions for the 
densities (7) and (8) remain unchanged, but the current density in equation 
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(9) is replaced by 

y(o)= i[ fb*D,q~ - (O~* ~b*)~b] (38) 

The equation of motion (10) for the neutrino remains unchanged, equation 
(11) is replaced by 

(D 2 + m2)~b + 2 i g j ,  D r O  = 0 (39) 

and we add the equation for the electromagnetic field, 

Fr~,~ = - eJ  r (40) 

When the electromagnetic interactions are included, the neutrino cur- 
rent density Jr is still conserved and lightlike, and the pion current density 
Jr is also conserved. When the pion field vanishes, there is no source for 
the electromagnetic field. When the neutrino field vanishes, we obtain the 
usual theory for the charged scalar field. When both fields are present, the 
source of the electromagnetic field has the additional term shown in equation 
(8). 

4. BOUND-STATE EQUATIONS 

A bound state in nonrelativistic quantum mechanics is represented by 
a stationary solution of the Schr6dinger equation that is localized in space. 
These concepts do not transfer easily to the relativistic theory. In our 
formulation of relativistic quantum mechanics, we have chosen (Marx, 
1972b) quasistationary states of the (modified) Dirac equation to represent 
the hydrogen atom; these are stationary solutions of the positive-frequency 
part of the equation. The solution of the full equation then contains a small 
negative-frequency part, which represents a probability for the electron to 
be annihilated. This wave function then represents a spin-�89 particle in an 
external Coulomb field. 

Here we are working with two dynamical fields (or three, if we include 
the electromagnetic interactions), and we want to find bound states for 
different combinations of positive- and negative-frequency parts. To explore 
the formulation similar to the relativistic hydrogen atom, we assume that 
a pion at rest at the origin is represented by 

q~(x) = ~ (  r) e x p ( - i k o t )  (41) 

where ~ is a real function of r = Ix], we find that 

l (~ = 0 (42 )  J(o ~ = 2ko~ 2, - i  

We also assume that also the neutrino is represented mainly by a stationary 
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positive-frequency wave function, 

X(X) = ~(x) exp(-ipot) (43) 

The equations of motion (10) and (11) reduce to 

(-Po - ior" V + 2gkor/2) ~(x) = 0 (44) 

-k2~ d-~\ dr]+m2+2gk~ n ( r ) = 0  (45) 

The last term in equation (45) is the only imaginary quantity, whence it has 
to vanish. The expression (21) for the energy reduces to 

Po = I d3x(-i~*~" V~+ k~/2 + ~7'2q - m2~72) (46) 

We use equation (44) and the real part of equation (45) to express the 
energy in the form 

P~176  k~176 I d3xr/2~t~ (47) 

where the wave functions have been normalized to 

f d3xrl2=(2ko)-l, f d3x,*,=l (48) 

and we assume that the field ~7 behaves in such a way at 0 and oo that the 
integrated terms vanish when the term ~7 '2 is integrated by parts. We can 
apply Schwartz's inequality to the integral in equation (47) to derive 

Po ~ po + ko-  2g (49) 

Although equations (44) and (45) are linear in ~ and 7/, respectively, the 
system of equations is not linear in both variables. We have to find values 
of Po and/Co that allow well-behaved nontrivial solutions for ~: and ~7. 

To resolve the angular dependence of ~:, we assume that it is a linear 
combination of the angular function for total angular momentum �89 namely 
(Bjorken and Drell, 1964), 

~I/2(O, ~p) : (4~.)_,/2 ( c o s 0  ~, 
\ s in  ve / 

~ ~_/2( 0, ~p) = (4~r)-~/2 (10) , 

so that 

s x ) = Pl2--m~m( r) ~m( o, ~ ), 

0~_1/2(0, ~)  = (4~.)_,/2 (sin Oe-i'P'~ 
k cos 0 1 

~ O, q)=(47r)-1/2(~) (50) 

' ' ( 5 1 )  K = 1 , - 1 ,  rn = ~ ,  - ~ ,  
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where the ~,~ are real and 0 and ~ are the polar and azimuthal angles of 
~. These functions satisfy 

or. ~ m ( 0 ,  ~p) = ~ ( 0 ,  q~) (52) 

[ d I + K \  ,~ 
,~ . V f (  r ) ~  O, ~o ) : [ - ~ r + - - - - ~ )  f (  r) ~l_K( O, ~o ) (53) 

We can then compute 

j0 2 2..{_2 ~7+++n+- ~7-++~72--+2cos 0(rl++~7-++~q+-n--) (54) 

J �9 ;=2(n++n-++ n+-,7--)+cos 0(,7~++-,7~+-+ 7-+2 _ 2__) 

+2  sin 0 sin ~(rl++rl+- + r/-+rl--)  (55) 

where we have written only the sign of the indices K and m. We separate 
the angular dependence and the real and imaginary parts in equation (44) 
to obtain the radial equations 

( -po+2gko~TZ)~+,m + 7/',,~ = 0 (56) 

2 
(-po+2gko,72),7,r. r~+,,. ,7~,m=0 (57) 

We multiply equation (56) by rl_,m, equation (57) by ~7+,m, and subtract to 
find 

d -  2 2 4 2 
drr (~7+,m + r/-,m) + r r/+,m = 0  (58) 

We still have to solve equations (45), (56), and (57), the radial current 
density (55) has to vanish., and the coefficients of the angle-dependent terms 
of  the charge density (54), at least in some approximation. It is not obvious 
how to do all this. A first guess for r/ might be 

(A~ 1/2 e - x r  

~7(r) = \ k o ]  r (59) 

which satisfies 

V 2 r I (r)  = 3. 2 rl (r)  + 4rr (3. / ko)1/26 (x) (60) 

then, equation (45) implies that 

3.2 = m 2_ k 2 (61) 

if the interaction terms are neglected. The singularity at the origin is of the 
type found in the potential for the Coulomb field. The other equations 
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cannot be satisfied exactly, since we would have 

'0++r/_+ = '0+_'0__ = 0 

'0++'0+_+ '0_+'0__ = 0 

2 2 ..{_ 2 _ _ , 0 2  ~7++-'0+- r/_+ = 0 

If  '0++ # 0, it follows that 

'0_+ = r/+_ = 0 

'0__ = + r/++ 

(62) 

(63) 

(64) 

(65) 

(66) 

Equation (58) then demands that r2'0++ and '0__ have to be constant, which 
contradicts equation (66). The function '0 in equation (59) could still be 
substituted into equations (56) and (57) in a successive approximation 
scheme. We also have to allow for an angular dependence of the pion wave 
function. 

The energy levels of the relativistic hydrogen atom are determined by 
the requirement that the wave function be normalizable. Here we have to 
determine both ko and P0 in this manner; sometimes such eigenvalues and 
eigenfunctions can be found best through an iterative procedure. 

The other part of the problem involves the solution of the same set of  
equations with a negative-frequency wave function s ~. The sign of Po in 
equations (47), (49), (56), and (57) has to be changed. 

A completely different approach is required within the context of 
quantum field theory. Two available formalisms are those of Bethe and 
Salpeter (1951) and Danos and Gillet (1975). 

5. V A R I A T I O N S  

We now discuss some related models that also conform to the identifica- 
tion chosen for the leptons. They are more complicated and should be 
pursued only if necessary. 

The neutrino field can be represented by a bispinor field ~, allowing 
for both right-handed and left-handed neutrinos. This field can be expressed 
in terms of two spinor fields, X and if, by setting (Marx, 1974b) 

{XA(X)'~ (67) ~(x) = \ ~a(x) ] 

We change the first term in the Lagrangian density (5) or (37) and write 

1. ~: A B  ~ A B  A B  :~ A B  # =~z(xAo'~ XB,~--Xa,~o'~ Xe (68) +~a,~o-. ~B--r ~B,.)+''" 
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where the Y matrices are 

( * 0 --O'I.LAB ~ 

As 0 / '  

and 

")/5 = ~1 ')/2"Y3 ~0 "~- (0  __Oi) 

~ =  Otyo  

The conserved neutrino current density can be a vector, 

- , A B  g . ~ A B r *  j .  - r162 = XaO'~ Xs  + SAUIJ 5S 

or a pseudovector or axial vector 

j~, = it~ys y~q t = ,  ,. A s ,  _ r . - -As  r *  ,,~ A W l x  A B  5AtS l.~ b B  

In these cases, the density j .  is no longer lightlike, but 

j 2  , A B  A B  , ~. (~D ..)_ y. C D ~ ,  - " = (Xa~'~. Xs + Go',~ r.,,)(Xe~',. Xo ~e~',. ~o) = + 4 X , I r  s 

and the equations of motion are changed to 

�9 As AS , - to'~ Xs,~ + gcr~ XsJ~, = 0 

�9 A S  A B  , --Z~A.~O'~ +g~Ao'~ J ~ = O  

where 

and 

J~, = J,, - 2gj~,&* ~b = J~) - 4gj~Ab* ~b 

(69) 

(70) 

(71) 

(72) 

(73) 

(74) 

(75) 

(76) 

(D 2 + m 2) ~b + 2igj .Duqb - 2gEj2~b = 0 (77) 

while the other two remain unchanged�9 The projection operators �89 + iys)  
can be used to exclude left-handed or right-handed neutrinos from r The 
field r can replace X throughout Section 2 if left-handed neutrinos are 
required. 

We can also replace the scalar field ~b with a vector field W~, which 
would be more in agreement with the current view of  weak interactions. 
The Lagrangian density could be 

1 �9 , A B  , A B  ~g=~z(Xa~r. X s , ~ - X a . . t r .  X s ) -  * W . , ~ W . , ~ + m E W * W . - g j ~ J ~  (78) 

where 

J~ = i( W *  W~,~ - W * ~  W,~) + 2 g J .  W *  W~ (79) 
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The equation of motion for the vector field is 

W,~.t, t, + m 2 W ~  - igj~,W,~,t, = 0 (80) 

One problem with the vector field is the elimination of the scalar part, since 
the subsidiary condition 

w~,~=o (81) 
is not compatible with the equation of motion (80). This difficulty is already 
present in the theory of the electromagnetic interactions of  the vector field 
(Goldberg and Marx, 1967). 

6. C O N C L U D I N G  R E M A R K S  

In our model of the electromagnetic and weak interactions, we have 
reduced the number of leptons from four to one, we have indicated how 
the masses of  the electron and the muon should be computed, and we 
provide a qualitative explanation for the large relative difference between 
the masses of  the muon and the electron. The electron and the muon are 
bound states of a neutrino and a pion, and the neutral pion is an interference 
state of the charged pion. The electric charge density is indefinite, as required 
by the probabilistic interpretation of relativistic quantum mechanics. The 
neutrino density is positive definite, at least in the simplest form of  the 
theory with no field quantization. If  the neutrino field has to be quantized, 
we avoid the infinities of quantum field theory by modifying the effect of 
the Hamiltonian operator on the state vector, which has to have one time 
variable per particle. 

The decay of unstable particles, muons and pions, is represented by 
the creation of a neutrino pair plus the combination of a pion with one of 
the created neutrinos. 

We have not included quarks and Yang-Mills fields in the theory. Beta 
decay of the neutron is quite compatible with our model, as it can occur 
through the emission of  a virtual pion. Consequently, nucleons and other 
baryons could be bound states of a basic baryon and one or more pions. 
The r particle could be an excited state in the same neutr ino-pion system, 
or it might involve a different type of neutrino. 

The bound state problem requires much additional work in relativistic 
quantum mechanics and in quantum field theory, especially if a mathemati- 
cally sound version of the latter is developed. 

In our model we have only one mass and two coupling constants, and 
possibly the coupling constants will be found to be related. The masses of 
the bound states will provide a good test of this theory once they are 
unambiguously calculated. 



700 Marx 

R E F E R E N C E S  

Bjorken, J. D., and Drell, S. D. (1964). Relativistic Quantum Mechanics. McGraw-Hill, New 
York. 

Bopp, F. (1965). Zeitschriftfiir Physik, 186, 410. 
Danos, M., and Gillet, V. (1975). National Bureau of Standards Monograph, 147. 
Dirac, P. A. M. (1932). Proceedings of the Royal Society of London, 136, 453. 
Feshbach, H., and Villars, F. M. H. (1958). Reviews of Modern Physics, 30, 24. 
Feynman, R. P. (1949). Physical Review, 76, 749, 769. 
Foldy, L. L., and Wouthuysen, S. A. (1950). Physical Review, 78, 29. 
Goldberg, I., and Marx, E. (1967). Nuovo Cimento, 50, 477. 
Marx, E. (1969). Nuovo Cimento, 60A, 669. 
Marx, E. (1970a). Nuovo Cimento, 67A, 129. 
Marx, E. (1970b). International Journal of Theoretical Physics, 3, 401. 
Marx, E. (1972a). Nuovo Cimento, 11B, 257. 
Marx, E. (1972b). International Journal of Theoretical Physics, 5, 251. 
Marx, E. (1974a). International Journal of Theoretical Physics, 9, 75. 
Marx, E. (1974b). International Journal of Theoretical Physics, 10, 253. 
Marx, E. (1975). International Journal of Theoretical Physics, 14, 75. 
Marx, E, (1976). International Journal of Theoretical Physics, 15, 891. 
Marx, E, (1979). International Journal of Theoretical Physics, 18, 819. 
Rohrlich, F. (1965). Classical Charged Particles. Addison-Wesley, Reading, Massachusetts. 
Salpeter, E. E., and Bethe, H. A. (1951). Physical Review 84, 1232. 
Stueckelberg, E. C. G. (1941). Helvetica Physics Acta, 14, 588. 
Stueckelberg, E. C. G. (1942). Helvetica Physics Acta, 15, 23. 


